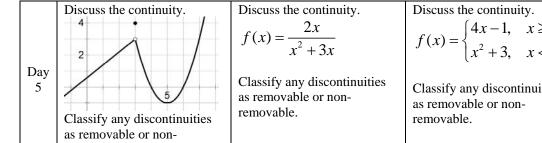
ACE Calc I Chapter 1 – Limits

Assignment Sheet

**This is a tentative schedule only. Actual assignments may differ from what is shown.

Day	Section	Page	Assignment
1	1.2 Approximating Limits	55	Odds #1,3,5,11-25 Board Problems
2	$1.2 \\ \delta - \epsilon \text{ Proofs for Limits}$	55	Odds #37,41,43,47 Board Problems
3	1.3 Evaluating Limits	67	Odds #5-57 (every other) Board Problems
4	1.3 Special Limits	67	Odds #59-69,73,83-87 Board Problems
5	1.4 Continuity Cont.	79	Odds # 1-9,17,19,27,31,35-53 Board Problems
6	1.5 Infinite Limits	88	Odds #3,5,11,25,29,31,33,35,37,43,51 Board Problems
7	3.5 Limits at Infinity	202	Odds #15-31 Board Problems
8	Review		
9	Test		


Chapter 1 – Board Problems

	Chapter 1 Board 11001ems							
	A	В	С	D				
	Approximate the limit using a table.	Approximate the limit using a table.	Approximate the limit using a graph.	Use the graph to find each: $f(1)$, $\lim_{x\to 1} f(x)$				
Day 1	$\lim_{x \to 4} \frac{[x/(x+1)] - 4/5}{x - 4}$	$\lim_{x \to 3} \frac{1}{x - 3}$	$\lim_{x \to 1} f(x)$ $f(x) = \begin{cases} x^2 + 2, & x \neq 1 \\ 1, & x = 1 \end{cases}$	$f(3), \lim_{x \to 3} f(x)$ 4 2 5				

Dov	Give a δ-ε proof:	Give a δ-ε proof:	Give a δ-ε proof:	Give a δ-ε proof:
Day 2	$\lim_{x\to -3}(2x+5)$	$\lim_{x\to 0}(3x-7)$	$\lim_{x\to 9} \sqrt{x}$	$\lim_{x\to 1}(x^2+3x)$

	Evaluate:	Evaluate:	Evaluate:	Evaluate:
Day 3	$\lim_{x \to -1} \frac{2x - 3}{x + 5}$	$\lim_{x \to 0} \frac{x^2 - 3}{x}$	$\lim_{x \to 3} \frac{3-x}{x^3 - 27}$	$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}$

		Evaluate:	Evaluate:	Evaluate:	Evaluate:
Г	ay 4	$\lim_{x\to 0} \frac{3(1-\cos x)}{x}$	$\lim_{x \to 0} \frac{\sin(5x)}{\sin(2x)}$	$\lim_{\Delta x \to 0} \frac{3(x + \Delta x) - 3x}{\Delta x}$	$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$
					Where: $f(x) = x^2 + 4x$

Day 5 Classify any discontinuities as removable or non-removable. $f(x) = \frac{2x}{x^2 + 3x}$ Classify any discontinuities as removable or non-removable.	$f(x) = \begin{cases} 4x - 1, & x \ge 2 \\ x^2 + 3, & x < 2 \end{cases}$ Classify any discontinuities as removable or non-removable.	$f(x) = \begin{cases} \frac{2}{x-5}, & x \neq 3\\ 1, & x = 3 \end{cases}$ Classify any discontinuities as removable or non-removable.
--	--	---

Discuss the continuity.

	Evaluate:	Evaluate:	Evaluate:	Evaluate:
Day 6	$\lim_{x \to 1^+} \frac{x^2 - 6x - 7}{x + 1}$	$\lim_{x \to 4^-} \frac{x^2}{x^2 + 6}$	$\lim_{x \to -3^{-}} \frac{x^2 + 2x - 3}{x^2 + x - 6}$	$\lim_{x \to 5^{+}} f(x)$ $f(x) = \begin{cases} 3x - 1, & x \le 5 \\ 2 & x = 5 \end{cases}$
				$(x^2, x > 5)$

	Evaluate:	Evaluate:	Evaluate:	Evaluate:
Day 7	$\lim_{x\to\infty}\frac{4x^2-3}{2x+1}$	$\lim_{x\to\infty} \frac{4x^2-3}{3+8x^2}$	$\lim_{x \to \infty} \frac{6x^2 + 3x}{6x^3}$	$\lim_{x\to\infty}\frac{x}{\sqrt{x^2+1}}$
	2.1.1	3 1 0x	Oπ.	VX 11