ACE Calc I Chapter 2B Implicit Differentiation & Rates of Change

Assignment Sheet

**This is a tentative schedule only. Actual assignments may differ from what is shown.

Day	Section	Page	Assignment
1	Implicit Differentiation	145	Odds ##5,11,15,23,27,29,39,47,53,57,73
		116	Odds #93,105,107
2	Rates of Change	126	Odds #83,85
		138	Odds #109,111
3	Velocity & Acceleration	116	Odds #95,97,99
		128	Odds #115,116
		138	Odds #105,106
4	Rates Practice	116	Evens #98
		127	Odds #89
5	Related Rates	153	Odds #11,13,15,17,21,25,27
6	Review		
7	Test		

Board Problems

DayABCD $2x^3 + 3y^2 = 6$ $y = \sin(2x + y)$ $x^3 + 3xy - 7y = 25$ $y^3 = 4x$ Find y'Find $\frac{dy}{d}$ Find y'Find $\frac{d^2y}{d}$							
Find y' Find y' d^2y		D	C	В	Α	Day	
dx dx^2		Find $\frac{d^2y}{d^2y}$	Find v'	Find $\frac{dy}{dx}$	•	1	

2	The area of a rectangle is given by $A = 3t(\sqrt{t+1})$. Find the avg. rate of change of the area on [1,3]. Find the instantaneous rate of change of the area at t=2.	The germ population in a sample at time t seconds is given by $P(t) = 500 \left(1 + \frac{4t}{50 + t^2}\right)$ Find <i>P</i> '(2) and interpret the	The manufacturing cost, C, for a product is a function of the number of units, n, manufactured. C(10) = C(15) C'(10) = \$5 / unit C'(15) = -\$2 / unit What conclusions can be drawn about
		value in the context of the	production costs at 10 units versus 15
		situation.	units?

	The distance, in meters, a particle travels over time is	The velocity of an object is given by $v(t) = 6\sqrt{t} - 3t$	A coin is dropped from the top of a 1,776 foot tower.	
3	given by $s(t) = \frac{6t}{t^2 + 1}$.	$\frac{g_{1}}{cm/sec.}$	Find the velocity of the coin at 1 second. Find the velocity of the coin when it	
	Find the avg. velocity of the particle from 0 to 2 seconds.	Find the avg. acceleration of the object from 1 to 3 seconds.		
	Find the velocity of the particle at 1 second.	Find the acceleration of the object at 3 seconds.	hits the ground.	

4 NONE

5	The volume of a sphere is given as $v = \frac{4}{3}\pi r^3$. If the radius of the sphere is increasing at a rate of 0.5cm/sec, find	A 13 foot ladder leans against a wall. The base of the ladder begins to slide away from the wall at 0.25 ft/sec. How fast is the top of the ladder	How fast is the angle between the ground and the ladder changing when the bottom of the ladder is 5 feet from the wall?	A conical tank is being filled with water at rate of 10 cubic feet per minute. The height of the tank is 12 feet and the diameter of its base
	the rate of change of the volume when the radius is 10cm.	sliding down the wall when the bottom of the ladder is 5 feet from the wall?		is 10 feet. Find the rate of change of the height of the water in the tank, when the water's depth is 8 feet.