ACE Calc I Chapter 4A – Anti-differentiation

Assignment Sheet

**This is a tentative schedule only. Actual assignments may differ from what is shown.

Day	Section	Page	Assignment
1	4.1 A Antiderivatives & Indefinite Integrals	251	Odds #11-31
2	4.1 B Differential Equations	251	Odds #35,39,41,43b,51,53,57,59,63
3	4.2 A Area & Summation	263	Odds #13-19,21,25,27,31,51
4	4.2 B Area Under a Curve	264	Odds #45,49,53,57
5	4.3 A Riemann Sums & Definite Integrals	273	Odds #3,5,7,17,21,27,31,51
6	4.3 B Properties of Definite Integrals	274	Odds #33,39,41,43,47,49
7	Review		
8	Test		

Chapter 4A – Board Problems

		Chapter 4/1 Doa	I U I I UDICIIIS	
Day	Α	В	С	D
1	$\int (2x+3)dx$	$\int \left(\sqrt[4]{x^3} + \frac{1}{x^2} \right) dx$	$\int (2x+1)(3x^2)dx$	$\int \frac{x^2 + x - 12}{x - 3} dx$

	Solve for a particular	Solve the differential	A car accelerates from	Acceleration due to
	solution.	equation for a particular	20mph to 65mph in 4	gravity is given by:
	f''(x) = 36x	solution.	seconds. Assuming	$a(t) = -32 ft / \sec^2$
2	f''(x) = 36x $f'(1) = 16$	$\frac{dy}{dx} = x^2 + 1$, (0,1)	constant acceleration,	Use anti-differentiation
	f(0) = 5	$\int \frac{dx}{dx} = x + 1$, (0,1)	find the distance the car	to find equations for
			travels in the 4 seconds.	v(t) and $s(t)$.

	Evaluate using sum formulas:	Use sum formulas to eliminate Σ : $\sum_{i=1}^{n} (3i^2 - i) \left(\frac{5}{2}\right)$	Find the approx. over & under estimates for the area below $y = \sqrt{x} + 4$, on	Find the approx. over & under estimates for the area below
3	$\sum_{i=1}^{30} 2(i^3 + 1)$	$\sum_{i=1}^{n} (3i^2 - i) \binom{n}{n}$	[0,6] using 6 equal width rectangles.	$y = \frac{4}{x-1}$, on [2,5] using 5 equal width rectangles.

	Use limits to find the area below	Use limits to find the area below
 4	y = 3x + 5 on [0,4]	$y = 2x^2 + 3x$ on [1,5]

	Use limits to evaluate:	Use limits to evaluate:
5	$\int_{0}^{3} (2x+3)dx$	$\int_{1}^{4} (x^3 + 2x) dx$

A	В
Use limits to evaluate: $\int_{1}^{2} (2x^{2} - 4x) dx$	$\int_{1}^{3} f(x)dx = 5 \text{ and } \int_{3}^{6} f(x)dx = -2$
	Find:
	a. $\int_{0}^{6} f(x)dx$ b. $\int_{0}^{3} 2f(x)dx$ c. $\int_{0}^{3} f(x)dx$
C	D 6
$\int_{5}^{7} f(x)dx = 18 \text{ and } \int_{5}^{7} g(x)dx = 4$	The graph of f(x) is pictured.

