ACE Calc I
 Chapter 4A - Anti-differentiation

Assignment Sheet

**This is a tentative schedule only. Actual assignments may differ from what is shown.

Day	Section	Page	Assignment
$\mathbf{1}$	 Indefinite Integrals	251	Odds \#11-31
$\mathbf{2}$	4.1 B Differential Equations	251	Odds \#35,39,41,43b,51,53,57,59,63
$\mathbf{3}$	4.2 A Area \& Summation	263	Odds \#13-19,21,25,27,31,51
$\mathbf{4}$	4.2 B Area Under a Curve	264	Odds \#45,49,53,57
$\mathbf{5}$	Riemann Sums \& Definite Integrals	273	Odds \#3,5,7,17,21,27,31,51
$\mathbf{6}$	4.3 B Properties of Definite Integrals	274	Odds \#33,39,41,43,47,49
$\mathbf{7}$	Review		
$\mathbf{8}$	Test		

Chapter 4A - Board Problems

Day	A	B	C	D
$\mathbf{1}$	$\int(2 x+3) d x$	$\int\left(\sqrt[4]{x^{3}}+\frac{1}{x^{2}}\right) d x$	$\int(2 x+1)\left(3 x^{2}\right) d x$	$\int \frac{x^{2}+x-12}{x-3} d x$

Solve for a particular solution.

2
$f^{\prime \prime}(x)=36 x$
$f^{\prime}(1)=16$
$f(0)=5$

Solve the differential equation for a particular solution.
$\frac{d y}{d x}=x^{2}+1,(0,1)$

A car accelerates from
20mph to 65mph in 4
seconds. Assuming
constant acceleration,
find the distance the car
travels in the 4 seconds.

Acceleration due to gravity is given by:
$a(t)=-32 f t / \mathrm{sec}^{2}$
Use anti-differentiation to find equations for $v(t)$ and $s(t)$.

	Evaluate using sum			
formulas:				
3	$\sum_{i=1}^{50} 2\left(i^{3}+1\right)$	Use sum formulas to eliminate $\Sigma:$ $\sum_{i=1}^{n}\left(3 i^{2}-i\right)\left(\frac{5}{n}\right)$	 under estimates for the area below $y=\sqrt{x}+4$, on $[0,6]$ using 6 equal width rectangles.	 under estimates for the area below
$y=\frac{4}{x-1}$, on [2,5] using 5				
equal width rectangles.				

4	Use limits to find the area below $y=3 x+5$ on $[0,4]$	Use limits to find the area below $y=2 x^{2}+3 x$ on $[1,5]$
5	Use limits to evaluate: $\int_{0}^{3}(2 x+3) d x$	Use limits to evaluate: $\int_{1}^{4}\left(x^{3}+2 x\right) d x$

