1.	$\lim_{x \to 2} f(x)$	=]
	$x \rightarrow z$		

 $2. \lim_{x \to -1} f(x) = DNE$

3.

A2.
$$\lim_{x \to 0} \frac{\left(\sqrt{x+4} - 2\right)}{x} = 0.25$$

х		-0.1	-0.0 1	-0.001	0	0.001	0.01	0. 1
f(z)	r)	f(1) = 0.2515823400		f(001) = 0.2500160000	?	f(.001) = 0.2499840000	f(0.01) = 0.2498439000	f(.1) = 0.2484567300

4. f(x) is discontinuous at x = -1 because f(-1) = undefined. (Removable)

$$f(x)$$
 is discontinuous at $x = 2$ because $\lim_{x \to 2} f(x) = \text{DNE}$. (Non-Removable)

6. For the proof, choose $\delta = \frac{\epsilon}{2}$.

8.
$$f'(x) = \lim_{\Delta x \to 0} \frac{(f(x + \Delta x) - f(x))}{\Delta x} = 2$$

10.
$$\int_{1}^{7} (2x + 3) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x = 24$$
where: $\Delta x = \frac{3}{n}$ and $c_i = 1 + \frac{3}{n}i$

5. f(x) is discontinuous at x = 1 because

$$\lim_{x \to 1^{-}} f(x) = -1 \text{ and } \lim_{x \to 1^{+}} f(x) = 2$$

which means $\lim_{x \to 1} f(x) = DNE$.

(Non-Removable)

7. For the proof, choose $\delta = \frac{\varepsilon}{7}$ on the interval $2 \le x \le 4$.

9.
$$f'(x) = \lim_{\Delta x \to 0} \frac{(f(x + \Delta x) - f(x))}{\Delta x} = 2x - 3$$

11.
$$\int_{0}^{5} (x^{2} - 2x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x = \frac{50}{3}$$

where: $\Delta x = \frac{5}{n}$ and $> c_i = 0 + \frac{5}{n}i$