\qquad
\qquad

The Second Derivative Test for Relative Extrema

Concavity \& Points of Inflection

Concave Down - A curve whose slope is \qquad

Concave Up - A curve whose slope is \qquad

Inflection Point - \qquad

Example: The graph of $f(x)$ is pictured.

a. Identify the intervals where f is cc -up.
b. Identify the intervals where f is cc -down.
c. Identify any points of inflection.

Concavity \& the Second Derivative

Concave Down - If slope of $f(x)$ is Decreasing, then $f^{\prime}(x)$ is \qquad and $f^{\prime \prime}(x)$ is \qquad

Concave Up - If slope of $f(x)$ is Increasing, then $f^{\prime}(x)$ is \qquad and $f^{\prime \prime}(x)$ is \qquad

Example: The graph of $f(x)$ is pictured.

a. Identify the intervals where $f^{\prime \prime}(x)$ is positive.
b. Identify the intervals where $f^{\prime \prime}(x)$ is negative.
c. Identify any points where $f^{\prime \prime}(x)=0$.

Example: Suppose $f(x)$ is a continuous function. The graph of $f^{\prime}(x)$ is pictured.

a. Identify the intervals where $f(x)$ is cc-up.
b. Identify the intervals where $f(x)$ is cc-down.

Example: Determine the intervals where the function is cc-up/dn and any points of inflection.

$$
f(x)=x^{6}-5 x^{4}
$$

The Second Derivative Test for Relative Extrema:

If $f(x)$ is a function such that $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ exists on an open interval containing c , then:

1. $f(c)$ is a Rel. Min. if:
2. $f(c)$ is a Rel. Max. if:

Example: Find the relative extrema using the $2^{\text {nd }}$ derivative test.

$$
f(x)=x^{6}-5 x^{4}
$$

Example: Find the relative extrema using the $2^{\text {nd }}$ derivative test.

$$
f(x)=-3 x^{5}+5 x^{3}
$$

