ACE Calculus – Mr. Bo Unit 3A – Day 4 Notes v3

Name

Date:_____

The Second Derivative Test for Relative Extrema

Concavity & Points of Inflection	
Concave Down – A curve whose slope is	$\int \int f(x)$
Concave Up – A curve whose slope is	
Inflection Point	
Example: The graph of $f(x)$ is pictured.	
	a. Identify the intervals where f is cc-up.
	 b. Identify the intervals where f is cc-down.
	c. Identify any points of inflection.
	_

Concavity & the Second Derivative

Concave Down – If slope of $f(x)$ is Decreasing ,	Concave Up – If slope of $f(x)$ is Increasing ,
then $f'(x)$ is	then $f'(x)$ is
and <i>f</i> "(<i>x</i>) is	and <i>f</i> "(<i>x</i>) is

Example: The graph of f(x) is pictured.

Example: Suppose f(x) is a continuous function. The graph of f'(x) is pictured.

Example: Determine the intervals where the function is cc-up/dn and any points of inflection.

$$f(x) = x^6 - 5x^4$$

If f(x) is a function such that f'(c) = 0 and f''(c) exists on an open interval containing c, then:

1. f(c) is a Rel. Min. if: 2. f(c) is a Rel. Max. if:

Example: Find the relative extrema using the 2nd derivative test.

 $f(x) = x^6 - 5x^4$

Example: Find the relative extrema using the 2nd derivative test.

$$f(x) = -3x^5 + 5x^3$$