ACE Calc I
 Chapter 3B - Applications of the Derivative ${ }_{v} 4$

Assignment Sheet

**This is a tentative schedule only. Actual assignments may differ from what is shown.

Day	Section	Page	Assignment
$\mathbf{1}$	3.7 Optimization	220	Odds \#2c,9,17,19
$\mathbf{2}$	3.7 Optimization Practice	3.8 Newton's Method	229
$\mathbf{3}$	3.9 Differentials	236	Odds \#3,7,11,15,21,23,34
$\mathbf{4}$	Review	Worksheet	
$\mathbf{5}$	Test		
$\mathbf{6}$			

Chapter 3B - Board Problems

Day	A	B
A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a single-strand electric fence. What is the minimum amount of fencing needed to enclose an area of $1 / 2$ Acre. (Note: 1 Acre $=43560$ sq. feet)	You are planning to make an open rectangular box from an 8in. x 15in. piece of cardboard by cutting squares from the corners and folding up the sides. What are the dimensions of the box of largest volume you can make this way?	

Day	C	
$\mathbf{1}$	Two sidewalks intersect at a right angle. Starting from the intersection, one person walks along one sidewalk at 7 $\mathrm{ft} / \mathrm{sec}$. A second person starting from 100 ft away from the intersection walks towards the intersection at 4.5 ft/sec. At what time is the distance between the two walkers minimized?	

2 NONE

Day	A	B
$\mathbf{3}$	Use 2 iterations of Newton's Method to approximate a zero of $f(x)=\sin x$ with an initial guess of $x_{1}=3$.	Use Newton's Method to approximate the zeros until successive values are within 0.001 of each other.

Day	C	D
3	Use 2 Newton's Method to approximate the intersection of $f(x)=\cos x$ and $g(x)=x^{2}$ on $[0, \pi]$.	Use Newton's Method to approximate the fixed points of $f(x)=\tan (x)$ on $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.

Day	A	B	C
$\mathbf{4}$	Find and compare Δy and $d y:$ $y=2 x^{3}-5 x$ when $x=3$ and $\Delta x=.2$	Find $d y:$ $y=\cos ^{2}\left(3 x^{2}-7 x\right)$	Use a tangent line to approximate the value $0 f \sqrt[3]{9}$.

Day	D
$\mathbf{4}$	A solid steel (cylindrical) rod has a diameter of $1 / 2$ inch. The rod is cut to a length of 1 foot, $33 / 4$ inches with a measurement error of $\pm 1 / 4$ inch. Find the propagated error and the percent error for the volume of the steel rod.

