Geometry - N	۱rs. Cower
Unit 2B - Day	1 Notes

Name	
Date	

Rigid Motion — A *transformation* (movement) of a 2D figure in the plane such that **segment length** and **angle measure** are preserved.

Translation — Moving a 2D figure a given distance in a given direction. This is referred to as translating along a *Vector*.

Vector – a distance and direction represented by a

1. Graph and label the image of ΔABC under the transformation: $T_{\overline{ED}}$ translation along vector \overrightarrow{ED}

2. Graph and label the image of $\triangle ABC$ under each transformation:

(a) Translate $\triangle ABC$ along vector \overrightarrow{DE}

$$T_{<3,2>}^{*}$$
 right 3, up2

 $T_{\overline{AC}}$ down 1 over3

d. To be a Rigid Motion, translation must preserve segment length and angle measure. Give evidence from your graphs to demonstrate how each is preserved.

Segment Length A'C' =
$$\sqrt{1^2 + 3^2}$$
 A

$$AC = \sqrt{1^2 + 3^2}$$
 A'C' = $\sqrt{1^2 + 3^2}$ A''C" = $\sqrt{1^2 + 3^2}$ A''C" = $\sqrt{1 + 9}$ = $\sqrt{1 + 9}$ Corresponding Ls are = $\sqrt{10}$ =

Corresponding lengths are congruent.

- a. Precisely describe the translation that maps $\triangle ABC$ onto
- * A translation of \triangle ABC 4 units left & 3 units up.
- * T(-4,3)
- * T<-4.3>

b. Precisely describe the translation that maps ΔABC onto $\Delta A'B'C'$.

Translation along vector CC OF DABC

Dilation - Enlarging or shrinking a 2D figure proportionally with respect to a given center point.

- 5. This picture of Homer Simpson and $\triangle ABC$ represents a Dilation.
- a. Which point is the center of dilation?

b. Is Dilation a Rigid Motion? Explain why or why not. Dilation Factor = Image (finish)

Pre-image (start)

Length is not preserved but

Length is not preserved. no, dilation is not a rigid motion,

6b. To be a Rigid Motion, Dilation must preserve segment length and angle measure. Obviously segment length was not preserved. Give evidence from your graphs to demonstrate:

Segment Length Not Preserved

Angle Measure is Preserved

(a protractor or tracing paper may be helpful)

I measure is preserved.

7. Graph and label the image of $\triangle ABC$ under each transformation:

- $_{ extsf{a.}}\,D_{P,3}$
- b. About center Q such that $\frac{A"B"}{AB} = \frac{1}{2}$.

8.

a. Describe precisely the transformation that maps ΔABC onto $\Delta A'B'C$.

Dilate \triangle ABC about point C by a factor of /a.

- A B C
- b. Describe precisely the transformation that maps ΔABC onto $\Delta AB'C'$

A Dilation of \triangle ABC $\stackrel{\text{def}}{=}$ about point A by a factor $\stackrel{\text{AC}}{=}$