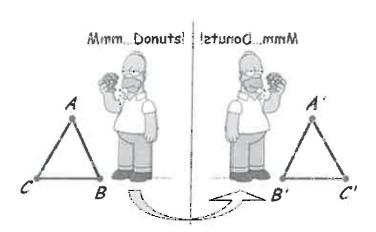
Name_	
Date	

Reflections & Symmetry

Line Reflection — moving a 2D figure such that each point appears at an equal distance on the opposite side of a given line.

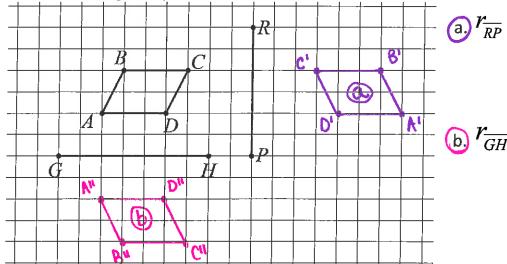


Orientation – The order in which points are arranged relative to each other in a 2D figure.

A line reflection will reverse the orientation of a figure.

ex: pre-image orientation: $\triangle ABC$ order of image orientation: $\triangle A'C'B'$ schanges.

1. Find the image of quadrilateral ABCD under each transformation:

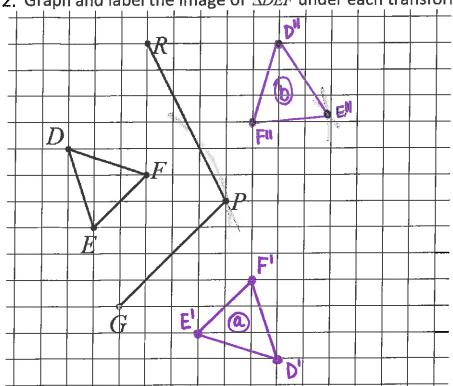


1c. Is reflection a Rigid Motion? Justify your response by providing evidence to support your answer. Yes a reflection is a rigid motion. Both length and angle measure are preserved.

1d. Is parallelism preserved under reflection? Justify your response.

yes parallelism is preserved under a reflection. AD/182 and A"D"/18°C".

2. Graph and label the image of ΔDEF under each transformation:



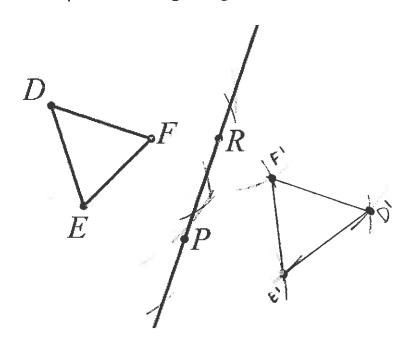
(a.) Reflect $\triangle DEF$ over \overline{GP} .

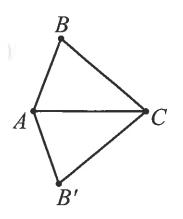
b. Reflect ΔDEF over \overline{RP} .

2b. Why is it much more difficult to reflect $\triangle DEF$ over \overline{RP} than over \overline{GP} ? Explain.

The points in $\triangle D^*E^*F^*$ don't all hit the axis nice. The slope of \overline{RP} is not T so we can't count across the diagonals of the grid boxes

3. Use a compass and straight edge to reflect ΔDEF over \overline{RP} .

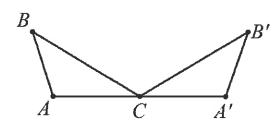




a. Describe precisely the reflection that would map ΔABC onto $\Delta AB^{+}C$.

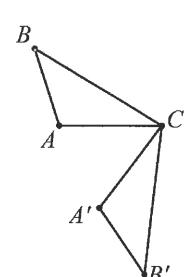
A reflection of \triangle ABC in the line \overline{AC}

r AC



b. Describe precisely the reflection that would map ΔABC onto $\Delta A'B'C$

Reflect A ABC over the 1 bisector of AAI



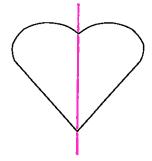
c. Describe precisely the reflection that would map ΔABC onto $\Delta A'B'C$

Reflect DABC over the 1 bisector of LACA'

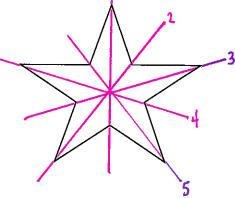
Line Symmetry: Having a line of reflection such that a shape can be folded onto itself.

Example: Draw the lines of symmetry for each figure.

1.



2.



ē.					
					j
		χ̈.			
					1
)