Geometry R - Mrs. Cowen
Name: \qquad
Unit 3 - Day 1 HW v2

Date: \qquad

1. Write the definition or Theorem (informally):
a. Right Angle: \qquad
b. Right Angle Theorem: \qquad
c. Segment Bisector: \qquad
2. Explain why the statement is FALSE based on the provided picture. Write the negation of the statement.
a. Statement: B is the midpoint of $\overline{C A}$.
b. Statement: $\overline{P R}$ does not bisect $\angle S R T$

FALSE because \qquad
Negation: \qquad

\qquad
\qquad FALSE because \qquad
Negation: \qquad
c. Statement: $\angle G$ is not congruent to $\angle H$.
d. Statement: $\angle J K L$ and $\angle M K L$ are supplementary.

Negation: \qquad
FALSE because \qquad
Negation: \qquad
3. Write a statement that is logically equivalent to the following conditional:
"If two angles are congruent, then they have the same measure."
4. After each statement write Converse, Inverse, Contra-positive, or None based on the given conditional. Circle the statement that is logically equivalent to the given conditional.
"If an angle is obtuse, then it is not $90^{\circ} . "$
a. If an angle is not obtuse, then it is 90°. \qquad
b. If an angle is not obtuse, then it is not 90°. \qquad
c. If an angle is 90°, then it is not obtuse. \qquad
d. If an angle is not 90°, then it is obtuse. \qquad
5. Re-write the bi-conditional as two separate conditional statements:
"An angle is straight if and only if its measure is 180°."

Conditional \#1: \qquad

Conditional \#2: \qquad
6. Write the Converse of each true conditional statement. If the converse is also true, combine the two statements into a single bi-conditional statement. If the converse is false, give an example to demonstrate that it is false.
a. If two lines are perpendicular, then they intersect at a 90° angle.

Converse: \qquad

Bi-Conditional or False example:
b. If two angles are adjacent, then they have the same vertex.

Converse: \qquad
Bi-Conditional or False Example:

Write the definition of each as a formal bi-conditional (...if and only if...)
17. Right Angle: \qquad
18. Midpoint: \qquad
19. Adjacent Angles:

