Geometry R – Mrs. Cowen	Name:	
Unit 3 – Day 3 HW	Date:	
Define:		
1. Complementary Angles:		
2. Vertical Angles:		
3. Segment Bisector:		
Write the definition as a bi-conditional (if and only if) 4. Supplementary Angles:		
Write the theorem and its converse each as a conditional. If the converse is also true, combine both statements into a single bi- conditional (if and only iff). 5. Complementary Theorem #1:		
Converse:		
Bi-Cond:		

Write the theorem and then use the theorem to make a true conclusion.

6. Supp. Theorem #2:

 $\angle 3$ is supplementary to $\angle 2$.

Given: $\angle 1$ is supplementary to $\angle 2$.

Conclusion:

7. Supp. Theorem #3: _____

8. Comp. Theorem #1:_____

Conclusion:

 $\angle 1$ is complementary to $\angle 2$ $\angle 3$ is complementary to $\angle 4$

∠ACD supplementary to ∠BCD

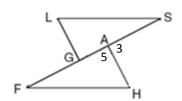
Conclusion:_____

Given: $\angle ACD \cong \angle BCD$

Given: $\angle 1 \cong \angle 3$.

For the given fact(s), write the conclusion(s) and reason(s) in Two-Column format. (Do not include the givens in the statement column for these questions.)

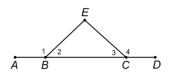
9. Given: \overline{PV} intersects \overline{SO} at E.


a E	V V
$S = \frac{2}{2}$	$\stackrel{-}{\underset{R}{\longrightarrow}} o$

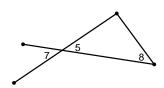
1			

Statements

2			


10. Given: \overline{FAS} intersects \overline{AH} at A $\angle 3 \cong \angle 5$

	Statements	Reasons
1		


Reasons

11. Given: \overline{ABCD} $\angle 2 \cong \angle 3$

	Statements	Reasons
1		
2		

12. Given: $\angle 5$ vertical to $\angle 7$ $\angle 7 \cong \angle 8$

	Statements	Reasons
1.		
2		