Use a Equality Property to make a true conclusion and state which postulate you used.

1. Given: AM + SR = CD + SR

2. Given:
$$m < 2 = m < 4$$

 $m < 5 = m < 6 + m < 4$

Conclusion:_____

Conclusion:

Property:

Property:_____

Complete a Two-column proof.

3. Given:
$$\overline{AD} \cong \overline{BC}$$

$$\overline{FD} \cong \overline{BG}$$

Prove: $\overline{AF} \cong \overline{CG}$

1.
$$\overline{AD} \cong \overline{BC}$$

2.
$$\overline{FD} \cong \overline{BG}$$

3.
$$AF + FD = AD$$

 $CG + BG = BC$

4.
$$AF + FD = CG + BG$$

5.
$$AF + FD = CG + FD$$

6.
$$AF = CG$$

Reasons

4. Given:
$$\overline{FGAS}$$
 $\overline{FG} \cong \overline{SA}$

Prove: $\overline{FA} \cong \overline{SG}$

Hint: Is there a common part?

Is this addition or subtraction method?

5. Given: \overline{FGAS} $\overline{FA} \cong \overline{SG}$

Prove: $\overline{FG} \cong \overline{SA}$

Hint: Is there a common part? Is this addition or subtraction?

6. Given: \overline{AFEGB}

E midpoint of $\overline{\mathit{FG}}$

$$\overline{AF}\cong \overline{GB}$$

Prove: $\overline{AE} \cong \overline{BE}$

† C

7. Prove: "If 2 angles are congruent, then their complements are congruent."

^ 1	
3	
A • • • •	В
•	R
•	<i>,</i> ,
2	
4	
P	Q

Statements	Reasons
1. m \angle ABC=90° and m \angle PQR=90° \angle 1 \cong \angle 2	1. Given
2. m∠ABC= m∠PQR	2.
3. $\angle 1$ comp. to $\angle 3$ $\angle 2$ comp. to $\angle 4$	3.
4. $m \angle 1 + m \angle 3 = 90$ $m \angle 2 + m \angle 4 = 90$	4.
5. $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 4$	5.
6. $m \angle 1 + m \angle 3 = m \angle 1 + m \angle 4$	6.
7. ∠3 ≅ ∠4	7.