\qquad
\qquad

Use a Equality Property to make a true conclusion and state which postulate you used.

1. Given: $A M+S R=C D+S R$

Conclusion: \qquad
Property: \qquad

Complete a Two-column proof.

3. Given: $\frac{\overline{A D}}{\overline{F D}} \cong \overline{B C}$

$$
\overline{F D} \cong \overline{B G}
$$

Prove: $\overline{A F} \cong \overline{C G}$

1. $\overline{A D} \simeq \overline{B C}$ Statements
2. $\overline{F D} \cong \overline{B G}$
3. $A F+F D=A D$ $C G+B G=B C$
4. $\overline{A D} \cong \overline{B C}$
5. $A F+F D=C G+B G$
6. $A F+F D=C G+F D$
7. $A F=C G$
8. Given: $m<2=m<4$
$m<5=m<6+m<4$

Conclusion: \qquad
Property: \qquad

Reasons

1.
2.
3.
4.
5.
6.
7. Given: $\overline{F G A S}$

$$
\overline{F G} \cong \overline{S A}
$$

Prove: $\overline{F A} \cong \overline{S G}$
Hint: Is there a common part?
Is this addition or subtraction method?

5. Given: $\overline{F G A S}$

$$
\overline{F A} \cong \overline{S G}
$$

Prove: $\overline{F G} \cong \overline{S A}$

Hint: Is there a common part? Is this addition or subtraction?
6. Given: $\overline{A F E G B}$

E midpoint of $\overline{F G}$
$\overline{A F} \cong \overline{G B}$
Prove: $\overline{A E} \cong \overline{B E}$

7. Prove: "If 2 angles are congruent, then their complements are congruent."
Statements \quad Reasons

