Geometry R - Mrs. Cowen
Unit 3 - Review v2
Complete a Two-column proof.

1. Given: $\overline{D E}$ bisects $\overline{A C}$ at E
$\overline{D E}$ bisects $\overline{A B}$ at D
Prove: $\begin{aligned} & \overline{B D} \cong \overline{A E} \\ & \cong \overline{C E}\end{aligned}$
2. Given: $\overline{F S} \perp \overline{L G}$

$$
\overline{F S} \perp \overline{H A}
$$

Prove: $\angle L G A \cong \angle H A G$

3. Given: $\angle B A C$ supp. $\angle B C E$

$$
\overline{A C E}
$$

Prove: $\angle B C A \cong \angle B A C$

Statements	Reasons
1. $\overline{A C E}$	1.

2. $\angle B C A$ supp. $\angle B C E$
3. $\angle B A C$ supp. $\angle B C E$
4. $\angle B C A \cong \angle B A C$
\qquad
Date: \qquad

5.
6.
7.
8. Segment Bisector: \qquad
9. Complementary Angles: \qquad

Negate the statement:

6. $\overrightarrow{R E}$ does not bisect $\angle P R S$.
7. $\overleftrightarrow{R T}$ bisects $\overrightarrow{G H}$

After each statement write Converse, Inverse, Contra-positive, or None based on the given conditional. Circle the statement that is logically equivalent to the given conditional.
"If two angles are right, then they are congruent."
8. If two angles are congruent, then they are both right. \qquad
9. If two angles are not congruent, then they are not both right. \qquad
10. If two angles are right, then they are not congruent. \qquad
11. If two angles are not both right, then they are not congruent.

Write the true conclusion that follows from the given statement and state the theorem, postulate or definition that justifies the conclusion.
12. Given: $\angle T A B$ is a right angle.

Conclusion: \qquad

Reason: \qquad
13. Given: $\overline{P V}$ intersects $\overline{S O}$ at E

Conclusion: \qquad

Reason: \qquad
14. Given: $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 3$

Conclusion: \qquad

Reason: \qquad
15. Given: $\overline{H D}$ bisects $\angle E H A$

Conclusion: \qquad

Reason: \qquad
16. Given: $\overline{P V}$ bisects $\overline{S O}$ at E

Conclusion: \qquad

Reason: \qquad
17. Given: $\overline{S B}$ and $\overline{R A}$ intersect
$\angle 2$ is supplementary to $\angle 1$
$\angle 3$ is supplementary to $\angle 4$
Prove: $\angle 1 \cong \angle 4$.

