Name:		
Date:		

Proving Triangles Congruent

look for + reflexive -sides -angles

1. Side-Side-Side Triangle Congruency (SSS)

hidden givens => + vertical Ls

2. Side-Angle-Side Triangle Congruency (SAS)

3. Angle-Side-Angle Triangle Congruency (ASA)

4. Angle-Angle-Side Triangle Congruency (AAS)

5. Hypotenuse-Leg (HL) - You must have a right L for this to be used!

Methods that DO NOT prove Triangles to be Congruent

AAA

Why does AAA not guarantee congruent triangles? Dilations preserve 4 measure hot length.

No swearing ASS (or SSA) "Donkey in math theory class!" It is not Nice!!

Why does ASS not guarantee congruent triangles?

2 different Sized Δ 's can be formed from $\mathbb{O}.A$

Examples: Which triangle postulate (if any) shows that the triangles are congruent?

1

AAS

2.

222

3.

4.

5.

"DONKEY THM"

6.

Justifying Congruent Triangles Using Constructions:

1. On the line, construct and Label ΔDEF so that $\Delta DEF \cong \Delta APH$ using the SAS congruency postulate.

2. On the line, construct and Label ΔDEF so that $\Delta DEF \cong \Delta APH$ using the SSS congruency postulate.

Justifying Congruent Triangles Using Rigid Motions:

1. Use Rigid Motions to Prove: $\triangle ARP \cong \triangle HTP$

Result: (State where each point maps to) = This forms \triangle HTP! where R->T. Pap' & AaH

Reasoning: (Justify why the mappings are valid)

RAT because of the defined vector

RT. A>H because AR = HT and LR= LT b/c translation preserves L'measure à distance:

Action: Reflect AHTP' over HT

Result: This forms Δ THP where T>T, H>H and P'>P

Reasoning: T & H remain the same since they are on HT, P'>P because TP & TP' and reflection preserves the distance.

2. Use Rigid Motions To Prove: $\triangle CAT \cong \triangle DOG$

Translate Δ Dog along vector \overrightarrow{OA} , this moves

o⇒A °

D>D! because of, this makes DCATEDDAG!
G>G's since translation is a rigid motion, distance & L measure the preserved

- (2) Rotate AD'AG' about point A counterclack-Wise Since Rotations are rigid motions use non have $\Delta CAT \cong \Delta D^{\parallel}AT$
- Reflect over AT forming & CAT. Since reflection is a rigid motion & AC = ADI and CT = D"T WE KNOW DD"AT = D CAT