Name:	
Date:	

Drawing Conclusions - Vertical, Supplementary, & Complementary Angles

Definitions:

Adjacent Angles: 2 angles that share a side and vertex (next to each

Non-Adjacent Angles: 2 angles that do not share a side or donot share

Lines m and k intersect:

Name 2 angles that are adjacent.

21 is adjacent to 22 23 is adjacent to 22 Name 2 angles that are non-adjacent.

21 and 23 are not adjacent.

Vertical Angles: the non-adjacent Ls formed by intersecting lines

Vertical Angles Theorem: Vertical angles are congruent

Given: Lines m & k intersect.

Statements	Reasons
(Identify the Vert. \angle 's) 1. \angle 1 Vertical \angle 3 (State they are \cong) 2. \angle 1 \cong \angle 3	1. Non-adj 2s formed by intersecting lines are vertical 2. vertical 2s ♀

Given: \overline{ABC} , are $\angle ABE$ and $\angle CBD$ vertical. Explain why or why not.

No they are not vertical. The angles are not formed by 2 intersecting lines

Supplementary Angles Theorem: the adjacent angles formed by intersecting

165 are Supplementary.
Given: Lines m & k intersect.

	_
(Identify the Supp. 2's) 1. 4 SUPP 4)

Statements

i. adj Ls formed by intersecting lines are supp

(Use the Supp. ∠'s) >2<u>M∠L+ML2</u> = \80

2. Supp Ls add to 180

Reasons

Option #1: Definition of Supp.

Option #2:

Supp. Theorem 1: $\cong \angle$'s have \cong supplements.

Given: \overline{ABCD}

∠1 ≅ ∠2

λi	K 12	
	Statements	Reasons
(Idei	ntify the Supp. 2's) 1 SUPP L3 3 SUPP L4	i. adj Ls formed by int. lines are supp
(Use 2	the Supp. ∠'s) <u>L3 ≃ L4</u>	2 ≥ ∠s have ≥ supps.

Options #3:

Supp. Theorem 2: $2 \angle$'s supp. to the same \angle are \cong .

Given: \overline{AB} and \overline{CD} intersect

Statements	Reasons
(Identify the Supp. ∠'s) 1. ∠ SUPP L ⊕ ∠2 SUPPL3	i. a dj 1s formed by intersecting lines are supp
(Use the Supp. \angle 's) 2. \angle 1 \angle 3 \angle 3	2. Ls supp to the sume Lare?

**Complementary Angles work exactly the same as Supplementary Angles!

Complementary Angles: 2 angles that add to 90°

Complimentary Angles Theorem: adjacent Ls that form a right Lare complementary

Given: ∠ABC is a right Angle

Conclusion: <u>LI and L2 are complementary</u>

Complimentary Theorem 1: $\cong \angle$'s have \cong complements.

Complimentary Theorem 2: $2 \angle$'s complementary to the same \angle are \cong .

liven: 21 comp 22 23 comp 24 21 = 24

1 cond: La ≥ L3 = Ls have ≥ comps.

given: Lièla con

12 % L3 comp

Concl: LIELS

Ls comp to the same / are ≥

);
			y
			Ū